1408/313 CHEMISTRY TECHNIQUES June/July 2010 Time: 3 hours

THE KENYA NATIONAL EXAMINATIONS COUNCIL SCIENCE LABORATORY TECHNOLOGY CRAFT

CHEMISTRY TECHNIQUES

3 hours

INSTRUCTIONS TO CANDIDATES

This paper consists of TWO sections, A and B.

Answer ALL the questions in section A and any TWO questions from section B.

Each question in section A carries 4 marks while each question in section B carries 20 marks.

This paper consists of 3 printed pages.

Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing. Burne

SECTION A (60 marks)

Answer all the questions in this section.

A.	State any four sample storage methods.	(4 marks)
.2.	(a) Define pH.	(1 mark)
	(b) Calculate pH of 0.1M NaOH solution.	(3 marks)
3.	25cm³ of a solution prepared using Na ₂ CO ₃ was neutralized by 24.8cm³ of Determine the molarity of the Na ₂ CO ₃ .	0.2MHCl. (4 marks)
4.	Draw a labelled diagram of gravity filtration technique.	(4 marks)
5.	State any four factors that affect efficiency in column chromatography.	(4 marks)
6.	(a) Define ppm.	(1 mark)
	(b) Calculate the mass of sodium nitrate (Fw = 85) that must be dissolved of solution so as to make a 100ppm with respect to sodium. (Na = 23, N = 14, 0 = 16)	ved in 250cm ³ (3 marks)
7.	Explain why alkali metals are analysed by flame photometry.	(4 marks)
8.	A current of 5A was passed through a solution of copper (II) sulphate for to Calculate the volume of oxygen liberated at the anode. (IF = 96500C, gas molar volume = 24 litres at r.t.p).	wo minutes. (4 marks)
9.		
	20cm of 0.05M AgNO, was mixed with excess of NaCl solution. Calcula AgCl precipitated. (Ag = 108, Cl = 35.5, Na = 23, O = 16, N = 14).	(4 marks)
10./	List any four methods of determining the purity of a substance.	(4 marks)
11.	State any four techniques used in purification of substances after separation	on. (4 marks)
12.	(a) State Beer-Lambert's Law.	(1 mark)
	(b) State three causes of deviation from Beer-Lambert's Law.	(3 marks)
13.	(a) State three advantages of soxhlet extraction as a method of separat	ting mixtures. (3 marks)
	(b) State one disadvantage of soxhlet extraction.	(1 mark)
14.	(a) Convert the following absorbance values into transmittance percent (a) 0; (b) 2.	t: (4 marks)
15.	Differentiate between grab and composite samples as used in Chemistry to	chniques. (4 marks)

SECTION B (40 marks)

Answer any Two questions from this section.

- (a) A sample of KMnO₄ absorbs visible radiation at 545nm. Describe how the wavelength of 545nm is practically determined. (7 marks)
 - (b) An 80ppm solution of KMnO₄ produced an abosorbance of 0.4 in a 1.0 cm cuvette.

 Calculate the molar absorptivity of KMnO₄ (K = 39, Mn = 55, 0 = 16). (9marks)
 - (c) State four advantages of colorimetry over other classical methods of analysis such as titrimetry and gravimetry. (4 marks)
- 17. (a) The amount of protein in a sample of cheese is determined by a Kjeldahl analysis for proteins. After digesting a 0.9814 g sample of cheese, the nitrogen is oxidised to NH₄⁺ and converted to NH₄ with NaOH. The NH₄ is then distilled into a flask containing 50cm³ of 0.1047M HCl. The excess HCl is then backtitrated with 22.84cm³ of 0.1183M NaOH.
 Calculate the percentage of protein in the cheese sample given that there is 6.38g of protein for every gram of nitrogen in most dairy products. (N = 14, H = 1) (13 marks)
 - (b) Draw the KJeldahl apparatus. (7 marks)
- 18. (a) 25cm³ of a sample solution containing 3.816gdm³ of the crystals of Na_B₄O₂.nH₂O required 25cm³ of 0.02M HCl to reach the methyl orange end-point. Given that the ionic equation of the reaction taking place is:

$$B_4O_{7(aq)}^{2-} + 2H_{(aq)}^{+} + 5H_2O_{(1)} - 4H_1BO_4;$$

determine the value of n in Na_B_O, nH_O.

$$(Na = 23, B = 10.8, O = 16, H = 1)$$

(10 marks)

(b) State six conditions necessary for analysis of a sample by volumetric analysis.

(6 marks)

- (4 marks) State four advantages of titrimetry as a method of analysis.
- 19. (a) Define electrolysis.

(1 mark)

(b) State three factors that affect the products of electrolysis.

(3 marks)

(c) State three applications of electrolysis.

(3 marks)

(d) A current of 5A was passed through a solution containing the salt MCl_n for 15.2 minutes. 1.512124g of metal M and 567cm³ of chlorine gas were produced at r.t.p Determine the formula of the salt.

Determine the formula of the sait. (M = 64, Cl = 35.5, IF = 96500C, gas molar volume = 24dm³).

(13 marks)